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The nature of the flow in a three-dimensional boundary layer on a triangular wing in 
hypersonic flow of a gas at zero angle of attack can vary widely. The parameters governing 
the type of flow and its special features are the sweepback angle of the lading edge, the 
surface temperature, the interaction parameter, and other characteristics. 

Symmetric flow over a thin triangular wing in the strong viscous interaction regime 
was examined in [i], but the similarity solution obtained does not satisfy the condition of 

no flow through the plane of symmetry of the wing. 

In further investigations [2, 3] for flows on noncooled bodies in the strong viscous 
interaction regime it was shown that the solution near the leading edge is not unique, and 
this allows us to satisfy boundary conditions at the trailing edge of the body or in the 
plane of symmetry of the triangular wing. There are considerable difficulties associated 
with constructing a global solution, due to the need to allow for the flow structure near 
the wing plane of symmetry. Some special kinds of possible local flows were pointed out and 
obtained in [4, 5]. 

In [6, 7] the authors obtained global solutions of the equations of the three-dimen- 
sional boundary layer in the strong viscous interaction regime, under the assumption that 
these equations are valid over the entire noncooled wing. 

Certain questions associated with transmission of perturbations on cold bodies and in 
the wake were considered in [8]. The present paper studies special features associated with 
propagation of perturbations in supersonic regimes of flow over cold triangular wings, and 
numerical solutions have been obtained. 

i. We consider flow of a hypersonic viscous gas over a triangular semi-infinite wing 
(Fig. i). We introduce a rectangular coordinate system with axesx~ andy7 directed along the 
normal to one of the edges and along the edge, and the yrZ axis directed along the normal to 
thewing surface. We consider the regime of strong interaction of the flow in the boundary 
layer with the external inviscid hypersonic stream [9] for the ca6e of an asym:ptotically 
small ratio of surface temperature to stagnatian temperature. The dimensionless boundary 
layer thickness is on the order of ~*/7 ~ T = Re7 :/4, where Reo = p~U~7/Do is the Reynolds 
number reckoned from the values of gas density and velocity in the unperturbed stream, the 
viscosity at the stagnation temperature (~o = D(T = To)), and the characteristic length ~, 
which drops out from the finite results for the similarity problem. For the components of 
the velocity vector in the directions of the x, y, and z axes, the pressure, the stagna- 
tion enthalpy, and the viscosity we introduce the following notation: 

The equations of the three-dimensional boundary layer and the boundary conditions, af- 
ter substitution of the variables 

Y 

k = x - ' /4  j" "pdg, ~ = oF$' arctg (x/z),  5 = x ;/" : "9-1dk, 
o o 

- Of - O~ x-i/2p, 

(1.l) 

(~o is the angle between the z axis and the direction of the incident flow), are reduced to 
the form 

(Nf')' + + ~,~.t I 
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Below we consider the case of linear dependence of the viscosity on temperature (n = i) and 
d = i. 

The nature of the flow around a cold triangular wing depends on the regime of interac- 
tion of the boundary layer with the external hypersonic stream [8]. In the subsonic regime 
the perturbations can be propagated upstream, in the case considered, from the plane of sym- 

metry to the leading edge. In choosing a unique solution one must take into account the addi- 
tional boundary condition, e.g., the value of the pressure on some surface ~ = const. In the 
supersofiic flow region the perturbations cannot be propagated upstream and the flow is de- 
scribed by the similarity solution of the system of equations (1.2). On a cold wing the 
variation of the displacement thickness is generated by the main part of the boundary layer, 
and this variation depends linearly on the pressure perturbations [8]. The interaction re- 
gime is determined by the sign of the derivative d~/dp, for dS/dp <0; we have the supersonic 
regime, and for d~/dp > 0 we have the subsonic regime. 

For reduced wing sweepback angle X = v/2 -- ~o, the quality d~/dpI~=o decreases mono- 
tonically, going to zero for a certain critical value sweepback angle [8]. Thus, in the 
boundary layer on a triangular wing for X* = ~/2 -- ~* there are regions of supersonic and 
subsonic flow, and the transition from one type of flow to the other occurs at some value 

~o > ~* [8]. The flow in the region between the leading edge and the surface ~* < ~ < Uo [8] 
is described by the similarity solution of the system of equations (1.2). In constructing 
a solution in the region between the surface ~ = ul and the wing plane of symmetry we must 
take account of the influence of transmission of perturbations. Viscosity forces do not in- 
fluence the perturbation flow in the boundary layer for X = O(i) near the surface ~ = ~i. 
Analysis of the system of equations describing this kind of flow shows that the system can 
be integrated once with respect to r whence it follows that the perturbations of the func- 
tions f and q are proportional to the pressure perturbation PI(~I). We represent the solution 
to the right of the surface~= ~ in the form of expansions for the stream functions: 
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where the functions with the subscript 0 correspond to the similarity solution. Substitu- 
tion of Eq. (1.3) into the system of equations (1.2) gives a linear system of equations for 
the first approximation, for which the solution was obtained in [8]. We note that for k = 
O(i) this solution does not depend on the form of the function pi(~i). The expression for 
the variation of the displacement thickness generated in the region ~ = 0(i) has the form 

t2 2 
Cf " - , -----v d L - -  ( g o - - / ~ - - ~ o ) d L  , (1.4) 

~ 2-Ff$o ~p  ~ \*o ~o~ ~ - ~o ~i~ ~ o 

where Ap = pl/po. 

The derivative d@i/dAp depends linearly on the coordinate ~. By differentiating Eq. 
(1.4) with respect to ~ we obtain the expression 

d61 
a a p  ~  d l  2 (go ,2 ,~ , �9 , 
- -  ~ ~ - " 7 7 - - - -  ~ - - ' - - F  - ~ - - - -  �9 o ( 4 r 1 7 6  ~o~m ~ )  ~ d~. (1 ~) 

The solution for the first approximation is not ufliformly accurate, since we did not account 
for viscous forces. To satisfy the boundary conditions assigned on the wing surface we must 
consider region 2, in which the influence of viscous and inertial forces is the same in the 
first approximation. The wall region 2 induces a change of the displacement thickness A~. 
Estimates for the thickness of region 2 and for the scales of the functions in this region are 
obtained by equating in the system of equations the orders of terms accounting for the influ- 
ence of viscous forces and inertial forces. Finally, the requirement of matching the solutions 
in regions 1 and 2 leads to equality of the orders of the pressure gradient and the inertial 
terms, which allows us, for a known thickness of region2, to find the scales of the perturba- 
tions functions f, ~, and g. An expression for the variation of the displacement thickness 
generated in region 2 has the form 

~1 = ClPl(Pff;1) l/3 (r comtant). (1.6) 

To determine the function p~(~) we must use the interaction condition. The assumption that 
the main contribution to variation of the displacement thickness is formed in region i leads, 
allowing for the interaction condition, to a function of the form p~ = c~. The flow in region 
2 then induces the change of displacement thickness A~ ~ ~/3pi, whick is greater by an order 
of magnitude than 6~ for all allowable values of ~. The assumption that the main contribu- 
tion to the displacement thickness comes from region 2 also does not lead to aself~natching 
scheme. In this case it turns out that the induced pressure perturbation is larger than the 
original perturbation. 

Analysis of the interaction condition shows that the solution of Eq. (1.3) exists if the 
total change of tbe displacement thickness in the first approximation is zero: 

A6 = 61 q- A I : 0, ( 1 . 7 )  

A similar kind of interaction was described in [i0], which studied flow in the vicinity of 
the trailing edge of a flat plate, and in [ii], which investigated flow over small roughnesses 
on the floor of a laminar boundary layer. An expression for the function p~(~) can be ob- 
tained from Eqs. (1.5) and (1.6), and has the form 

p~ (~} = c exp ( - -  ~/~). ( i .  8) 

The total change of displacement thickness can be obtained from Eq. (1.2): 

V - - I  A o . . . .  ~ ~ ( 1 . 9 )  a ~  = ~ p ( g l  - -  uf0f l  - -  2~0~1 - -  gO + f;2 + ~;2)  d~  + ~ 1  o (g2 - -  g l  (0)) dl] + O ( ~ l P l / P o ) ,  ~] = :~/-~2 �9 
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The first integral on the right of Eq. (1.9) is the contribution of region i, and, ac- 
cording to Eq. (1.5), can be written in the form 6~ = (y -- l):ApSoJ~5~/47po. The second 
integral in Eq. (1.9) is the contribution of the wall region to the change of the displace- 
ment thickness, and to find this integral one must obtain a Solution for region 2. 

In region 2 we introduce the representation of the function 

< p  ~xp ( -  ~ I ~ )  I~ (~) + . . .  / = aG2~1t2 + ~. 
c (p = bG2~d2 + ~ ~l~ exp ( - -  a /~ )  q~ (q) + . . . ,  

~r c 2 �9 = d~'~P + F ~ x p ( - ~ & )  (,0 + . .  

(1.10)  

where c is an arbitrary constant. The first terms of the expansions for the functions f,(P , 
and g are asymptotic representations of the functions fo,~ o, and go for X § 0. The param- 
eters a, b, and d are determined from the similarity solution. Substitution of Eq. (i.i0) 
in the system of equations (1.2) leads, after a number of transformations, to the following 

system of equations for the first approximation: 

r t v  r H t  v t# 

Zl - -  I ] I =  ~]iZl, Z2 - -  ~]I ~ ? ] I Z 2 ~  Z2, Z3 ~ ~]iZ3--  Z2, 

z~ (o) = z~ (o) = z~ (o) = z'~ (o) = ~ (o) = o, 
t r t 

z ~ ( o o ) = - - i + o ( t ) ,  z . , ( o o ) = - - l n ~ l l + O 0 )  , Z ~ ( o o ) = - l n ~ h + O ( t ) ,  
where 

2a/3rzlla?0) oTa/a ( b /2 - -  aT.z) 
ZZ -~" d (y - -  1) sin 0) 1 (b cos co 1 -{- a silt a)l) ' 

o4/3<zl/~'p0) T 4/a r cos 0)1 - -  T2 sin o)1) 
z2 = d ( ?  - -  1) s i n  0)i ' 

sin 0)1 
2c~176  qlT-1/32-1/aa-1/3; T (a c o s  o 1 b s i n  o l ) .  

= .% ; ~ 1 = '  = o - - ' - ~  za d (7 - -  1) sin" o~ 

Taking account of Eqs. (1.7) and (1.9), the solution of the system of equations describ- 
ing the solution in region 2 leads to an expression for the eigenvalue a 

~ (d~Z2 sin~ ~l,'y~oDV2, & = S (~ (~1) - ~ (co)) ~,~. 
0 

T h e  d e p e n d e n c e  a ( X )  i s  s h o w n  i n  F i g .  2 .  I t  c a n  b e  s e e n  t h a t  a s  t h e  s w e e p b a c k  a n g l e  • = ~ / 2  - 
~o increases, the eigenvalue ~(X) increases monotonically and tends to infinity for X § X* = 
v/2 -- 0~*. The increase of the eigenvalue a is associated with a decrease of the degree of 
transmission of perturbations upstream. This kind of change in the nature of transmission 
of perturbations can be explained by the fact that the change of the displacement thickness 
of region 2 depends inversely on powers of both the eigenvalue ~ and the parameter ~z. 
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The condition (1.7) requires conservationof the order of the quantity A~, and there- 

fore, as we reduce the distance from the leading edge to the plane where the perturbed flow 

begins, the eigenvalue must increase. 

The physical explanation of the increase of the intensity of transmission of perturba- 

tions (decrease of ~) with reduced wing sweepback angle X is connected with the fact that 

with increase of ~o we have an increased length (with respect to ~) of the supersonic flow 
region, and therefore the gradients of the stream functions are reduced, the velocity profiles 
become less full, and we increase the thickness of the layer of subsonic jets. 

For ~o § ~* the functions sini< and sini~, appearing in the system of equations (1.2), 
can be approximated by the first terms of a series expansion, since ~ = ~i + wo% = o(i). 
Then to evaluate the thickness of region 2 we have 

~ "~ (% + ~o~) P~ " 

Correspondingly, the change of displacement thickness generated in region 2 is determined as 
follows : 

Al = Ap 1 Pl 1/3, A =  ('l-2"l~ ~ o 1/3 
(% + ~ ~;~ ~-~-~ ] Po~'/3 < o. (1 .11)  

Condition (1.7), allowing for the expression for A~, takes the form 

( % + ~ :  / = 0 ,  B - -  - 4 ~  o ~. (i.12) 
0~I) I 

The solution of the differential equation (i.12) is 

+ (1,13) 

For  ~ = 0 ( 1 )  t h e  e x p r e s s i o n  ( 1 . 1 2 )  c o i n c i d e s  i n  i t s  m a i n  t e r m  w i t h  Eq. ( 1 . 8 ) .  F o r  ~ § 
0 and for a small but fixed value of ;~ the right side of Eq. (i.13), after expansion in a 
series with respect to the small parameter ~/(~o~), reduces to the function 

Pl = r exp 3Baa)0~ �9 (1.14) 

For  ~o § ~* (~o -- ~* < 0) t h e  c h a n g e  o f  t h e  d i s p l a c e m e n t  t h i c k n e s s  i n  r e g i o n  1 c a n  be  
represented in the form 5~ = B(~ -- i + ~*/~Jo)P~. An estimate for the change of the dis- 
placement thickness of layer 2 is obtained from Eq. (i.ii), if we put ~J~ = 0 there. Corre- 
spondingly, condition (1.7) has the form 

The solution of Eq. (1.15) will then be 

~o~I + + y~,__O)o~o~z, . �9 (1.16) 

For finite values of the parameter ~* -- ~o we obtain a power series eigenfunction of 

the type p = cE~, which agrees with the results of [8]. The other limiting transition ~o § 
~* leads to the function (1.14). Thus, we have achieved a continuous transition of the co- 
ordinate expansions near the leading edge for the subsonic flow regime to expansions de- 
scribing the beginning of interaction in the flow containing subsonic and supersonic regions. 

2. Using the method described in [7] we have obtained a numerical solution of the sys- 
tem of equations of the three-dimensional boundary layer on a triangular wing in the regime 
of strong viscous interaction. It should be noted that in the calculations we used a system 
of boundary layer equations in a coordinate system fixed to the wing symmetry axis. For rea- 
sons of brevity this system is not presented here, and the results of the calculations are 
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represented in the variables of Eq. (i.i). In the numerical integration of the system of equa- 
tions the region in the vicinity of w = ~i was not treated specially, and the boundary problem 

was solved from one leading edge to the other. 

In the calculations it was assumed that ~ = i, n = i, y = 1.4, gw = 0. In Fig. 3, curves 
1-4 show the pressure distribution with respec~ to the coordinate ~ for different lengths of 
wing SQ = tan ~o = 0.5; 0.8; i; 2. The crosses denote values of the coordinate ~i for which 
there was transition from the supersonic to the subsonic regime, in accordance with the ex- 
pression going to zero for the change of the displacement thickness of Eq. (1.4). As can be 
seen from the results of the numerical solution of the boundary problem presented, the depar- 
ture from the similarity solutions, i.e., the transition from supersonic to subsonic flow, 
takes place in accordance with the values of wl given by Eq. (1.4). Thus, ignoring the fine 
structure for ~ = ~ in solving the global problem does not lead to significant errors in 
determining the pressure distribution. 

The flows studied in this work, with regions of subsonic and supersonic interaction, were 
set up for quite smooth boundary conditions, assigned downstream. As was mentioned in [8], 
one may find other types of flows with supersonic and subsonic regions, where the transition 
from one region to the other occurs in small distances because of large perturbations assigned 
downstream. Further analytical and computational investigations are required to analyze such 

flows. 
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